Regions of human kidney anion exchanger 1 (kAE1) required for basolateral targeting of kAE1 in polarised kidney cells: mis-targeting explains dominant renal tubular acidosis (dRTA).

نویسندگان

  • Ashley M Toye
  • George Banting
  • Michael J A Tanner
چکیده

Distal renal tubular acidosis (dRTA) is characterised by defective acid secretion by kidney alpha-intercalated cells. Some dominantly inherited forms of dRTA result from anion exchanger 1 (AE1) mutations. We have developed a stably transfected cell model for the expression of human kidney AE1 (kAE1) and mutant kAE1 proteins in MDCKI cells. Normal kAE1 was delivered to the plasma membrane of non-polarised cells and to the basolateral membrane of polarised cells. The AE1 N-glycan was processed to a complex form. Surprisingly, expression of kAE1 increased the permeability of the paracellular barrier of polarised MDCKI monolayers. All dominant dRTA mutations examined altered the targeting of kAE1 in MDCKI cells. The mutant proteins kAE1(R589H), kAE1(S613F) and kAE1(R901Stop) were retained in the ER in non-polarised cells, but the kAE1(R901Stop) protein was also present in late endosomes/lysosomes. The complex N-glycan of kAE1(R901Stop) was larger than that of normal kAE1. In polarised cells, the mutant kAE1(R901Stop) was mis-targeted to the apical membrane, while the kAE1(R589H) and kAE1(S613F) mutants did not reach the cell surface. These results demonstrate that dominant dRTA mutations cause aberrant targeting of kAE1 in polarised kidney cells and provide an explanation for the origin of dominant dRTA. Our data also demonstrate that the 11 C-terminal residues of kAE1 contain a tyrosine-dependent basolateral targeting signal that is not recognised by mu 1B-containing AP-1 adaptor complexes. In the absence of the N-terminus of kAE1, the C-terminus was not sufficient to localise kAE1 to the basolateral membrane. These results suggest that a determinant within the kAE1 N-terminus co-operates with the C-terminus for kAE1 basolateral localisation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Rescue of a Kidney Anion Exchanger 1 Trafficking Mutant in Renal Epithelial Cells

Mutations in the SLC4A1 gene encoding the anion exchanger 1 (AE1) can cause distal renal tubular acidosis (dRTA), a disease often due to mis-trafficking of the mutant protein. In this study, we investigated whether trafficking of a Golgi-retained dRTA mutant, G701D kAE1, or two dRTA mutants retained in the endoplasmic reticulum, C479W and R589H kAE1, could be functionally rescued to the plasma ...

متن کامل

Dominant-negative effect of Southeast Asian ovalocytosis anion exchanger 1 in compound heterozygous distal renal tubular acidosis.

The human chloride/bicarbonate AE1 (anion exchanger) is a dimeric glycoprotein expressed in the red blood cell membrane,and expressed as an N-terminal (Delta1-65) truncated form, kAE1(kidney AE1), in the basolateral membrane of alpha-intercalated cells in the distal nephron. Mutations in AE1 can cause SAO (Southeast Asian ovalocytosis) or dRTA (distal renal tubular acidosis), an inherited kidne...

متن کامل

Defective kidney anion-exchanger 1 (AE1, Band 3) trafficking in dominant distal renal tubular acidosis (dRTA).

dRTA (distal renal tubular acidosis) results from the failure of the a-intercalated cells in the distal tubule of the nephron to acidify the urine. A truncated form of AE1 (anion-exchanger 1; Band 3), kAE1 (kidney isoform of AE1), is located in the basolateral membrane of the intercalated cell. Mutations in the AE1 gene cause autosomal dominant and recessive forms of dRTA. All the dominant dRTA...

متن کامل

The carboxyl-terminally truncated kidney anion exchanger 1 R901X dRTA mutant is unstable at the plasma membrane.

Mutations in the SLC4A1 gene coding for kidney anion exchanger 1 (kAE1) cause distal renal tubular acidosis (dRTA). We investigated the fate of the most common truncated dominant dRTA mutant kAE1 R901X. In renal epithelial cells, we found that kAE1 R901X is less abundant than kAE1 wild-type (WT) at the plasma membrane. Although kAE1 WT and kAE1 R901X have similar half-lives, the decreased abund...

متن کامل

Impaired trafficking of distal renal tubular acidosis mutants of the human kidney anion exchanger kAE1.

Distal renal tubular acidosis (dRTA) is an inherited disease characterized by the failure of the kidneys to appropriately acidify urine and is associated with mutations in the anion exchanger (AE)1 gene. The effect of the R589H dRTA mutation on the expression of the human erythroid AE1 and the truncated kidney form (kAE1) was examined in transfected human embryonic kidney 293 cells. AE1, AE1 R5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 117 Pt 8  شماره 

صفحات  -

تاریخ انتشار 2004